causalnex.plots.plot_structure¶
-
causalnex.plots.
plot_structure
(g, ax=None, title=None, show_labels=True, node_color='r', edge_color='k', label_color='k', node_positions=None)[source]¶ Plot the structure model to visualise the relationships between nodes.
Parameters: - g (
StructureModel
) – the structure model to plot. - ax (
Optional
[Axes
]) – if provided then figure will be drawn to this Axes, otherwise a new Axes will be created. - title (
Optional
[str
]) – if provided then the title will be drawn on the plot. - show_labels (
bool
) – if True then node labels will be drawn. - node_color (
str
) – a single color format string, for example ‘r’ or ‘#ff0000’. default “r”. - edge_color (
str
) – a single color format string, for example ‘r’ or ‘#ff0000’. default “k”. - label_color (
str
) – a single color format string, for example ‘r’ or ‘#ff0000’. default “k”. - node_positions (
Optional
[Dict
[str
,List
[float
]]]) – coordinates for node positions, ie {“node_a”: [0, 0]}.
Return type: Tuple
[Figure
,Axes
,Dict
[str
,List
[float
]]]Returns: fig, ax, node_positions.
Example:
# Create a Bayesian Network with a manually defined DAG. from causalnex.structure import StructureModel from causalnex.network import BayesianNetwork sm = StructureModel() sm.add_edges_from([ ('rush_hour', 'traffic'), ('weather', 'traffic') ]) from causalnex.plots import plot_structure plot_structure(sm)
- g (